Metric Properties of Structured Data Visualizations through Generative Probabilistic Modeling

نویسندگان

  • Peter Tiño
  • Nikolaos Gianniotis
چکیده

Recently, generative probabilistic modeling principles were extended to visualization of structured data types, such as sequences. The models are formulated as constrained mixtures of sequence models a generalization of density-based visualization methods previously developed for static data sets. In order to effectively explore visualization plots, one needs to understand local directional magnification factors, i.e. the extend to which small positional changes on visualization plot lead to changes in local noise models explaining the structured data. Magnification factors are useful for highlighting boundaries between data clusters. In this paper we present two techniques for estimating local metric induced on the sequence space by the model formulation. We first verify our approach in two controlled experiments involving artificially generated sequences. We then illustrate our methodology on sequences representing chorals by J.S. Bach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualisation of structured data through generative probabilistic modeling

This thesis is concerned with the construction of topographic maps of structured data. A probabilistic generative model-based approach is taken, inspired by the GTM algorithm. Depending on the data at hand, the form of a probabilistic generative model is specified that is appropriate for modelling the probability density of the data. A mixture of such models is formulated which is topographical...

متن کامل

A Generative Modeling Framework for Structured Hidden Speech Dynamics

We outline a structured speech model, as a special and perhaps extreme form of probabilistic generative modeling. The model is equipped with long-contextual-span capabilities that are missing in the HMM approach. Compact (and physically meaningful) parameterization of the model is made possible by the continuity constraint in the hidden vocal tract resonance (VTR) domain. The target-directed VT...

متن کامل

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

Visualisation of tree-structured data through generative probabilistic modelling

We present a generative probabilistic model for the topographic mapping of tree structured data. The model is formulated as constrained mixture of hidden Markov tree models. A natural measure of likelihood arises as a cost function that guides the model fitting. We compare our approach with an existing neural-based methodology for constructing topographic maps of directed acyclic graphs. We arg...

متن کامل

A Probabilistic Approach to the Semantic Interpretation of Building Facades

Semantically-enhanced 3D model reconstruction in urban environments is useful in a variety of applications, such as extracting metric and semantic information about buildings, visualizing the data in a way that outlines important aspects, or urban planning. We present a probabilistic image-based approach to the semantic interpretation of building facades. We are motivated by the 4D Atlanta proj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007